Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pediatr ; 22(1): 593, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229790

ABSTRACT

BACKGROUND: Effective triage at hospitals can improve outcomes for children globally by helping identify and prioritize care for those most at-risk of death. Paper-based pediatric triage guidelines have been developed to support frontline health workers in low-resource settings, but these guidelines can be challenging to implement. Smart Triage is a digital triaging platform for quality improvement (QI) that aims to address this challenge. Smart Triage represents a major cultural and behavioural shift in terms of managing patients at health facilities in low-and middle-income countries. The purpose of this study is to understand user perspectives on the usability, feasibility, and acceptability of Smart Triage to inform ongoing and future implementation. METHODS: This was a descriptive qualitative study comprising of face-to-face interviews with health workers (n = 15) at a regional referral hospital in Eastern Uganda, conducted as a sub-study of a larger clinical trial to evaluate Smart Triage (NCT04304235). Thematic analysis was used to assess the usability, feasibility, and acceptability of the platform, focusing on its use in stratifying and prioritizing patients according to their risk and informing QI initiatives implemented by health workers. RESULTS: With appropriate training and experience, health workers found most features of Smart Triage usable and feasible to implement, and reported the platform was acceptable due to its positive impact on reducing the time to treatment for emergency pediatric cases and its use in informing QI initiatives within the pediatric ward. Several factors that reduced the feasibility and acceptability were identified, including high staff turnover, a lack of medical supplies at the hospital, and challenges with staff attitudes. CONCLUSION: Health workers can use the Smart Triage digital triaging platform to identify and prioritize care for severely ill children and improve quality of care at health facilities in low-resource settings. Future innovation is needed to address identified feasibility and acceptability challenges; however, this platform could potentially address some of the challenges to implementing current paper-based systems.


Subject(s)
Quality Improvement , Triage , Child , Clinical Trials as Topic , Hospitals , Humans , Referral and Consultation , Uganda
2.
BMJ Open ; 12(1): e053486, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017248

ABSTRACT

OBJECTIVE: To assess the feasibility, usability and acceptability of two non-invasive, multiparameter, continuous physiological monitoring (MCPM) technologies for use in neonates within a resource-constrained healthcare setting in sub-Saharan Africa. DESIGN: A qualitative study using in-depth interviews and direct observations to describe healthcare professional and caregiver perspectives and experiences with investigational MCPM technologies from EarlySense and Sibel compared with selected reference technologies. SETTING: Pumwani Maternity Hospital is a public, high-volume, tertiary hospital in Nairobi, Kenya. PARTICIPANTS: In-depth interviews were conducted with five healthcare administrators, 12 healthcare providers and 10 caregivers. Direct observations were made of healthcare providers using the technologies on 12 neonates overall. RESULTS: Design factors like non-invasiveness, portability, ease-of-use and ability to measure multiple vital signs concurrently emerged as key themes supporting the usability and acceptability of the investigational technologies. However, respondents also reported feasibility challenges to implementation, including overcrowding in the neonatal unit, lack of reliable access to electricity and computers, and concerns about cost and maintenance needs. To improve acceptability, respondents highlighted the need for adequate staffing to appropriately engage caregivers and dispel misconceptions about the technologies. CONCLUSION: Study participants were positive about the usefulness of the investigational technologies to strengthen clinical care quality and identification of at-risk neonates for better access to timely interventions. These technologies have the potential to improve equity of access to appropriate healthcare services and neonatal outcomes in sub-Saharan African healthcare facilities. However, health system strengthening is also critical to support sustainable uptake of technologies into routine care. TRIAL REGISTRATION NUMBER: NCT03920761.


Subject(s)
Tertiary Care Centers , Feasibility Studies , Female , Humans , Infant, Newborn , Kenya , Monitoring, Physiologic , Pregnancy , Qualitative Research
3.
J Med Internet Res ; 23(10): e29755, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34709194

ABSTRACT

BACKGROUND: Continuous physiological monitoring technologies are important for strengthening hospital care for neonates, particularly in resource-constrained settings, and understanding user perspectives is critical for informing medical technology design, development, and optimization. OBJECTIVE: This study aims to assess the feasibility, usability, and acceptability of 2 noninvasive, multiparameter, continuous physiological monitoring technologies for use in neonates in an African health care setting. METHODS: We assessed 2 investigational technologies from EarlySense and Sibel, compared with the reference Masimo Rad-97 technology through in-depth interviews and direct observations. A purposive sample of health care administrators, health care providers, and caregivers at Aga Khan University Hospital, a tertiary, private hospital in Nairobi, Kenya, were included. Data were analyzed using a thematic approach in NVivo 12 software. RESULTS: Between July and August 2020, we interviewed 12 health care providers, 5 health care administrators, and 10 caregivers and observed the monitoring of 12 neonates. Staffing and maintenance of training in neonatal units are important feasibility considerations, and simple training requirements support the feasibility of the investigational technologies. Key usability characteristics included ease of use, wireless features, and reduced number of attachments connecting the neonate to the monitoring technology, which health care providers considered to increase the efficiency of care. The main factors supporting acceptability included caregiver-highlighted perceptions of neonate comfort and health care respondent technology familiarity. Concerns about the side effects of wireless connections, electromagnetic fields, and mistrust of unfamiliar technologies have emerged as possible acceptability barriers to investigational technologies. CONCLUSIONS: Overall, respondents considered the investigational technologies feasible, usable, and acceptable for the care of neonates at this health care facility. Our findings highlight the potential of different multiparameter continuous physiological monitoring technologies for use in different neonatal care settings. Simple and user-friendly technologies may help to bridge gaps in current care where there are many neonates; however, challenges in maintaining training and ensuring feasibility within resource-constrained health care settings warrant further research. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1136/bmjopen-2019-035184.


Subject(s)
Caregivers , Health Personnel , Feasibility Studies , Hospitals, Private , Humans , Infant, Newborn , Kenya , Monitoring, Physiologic , Technology , Tertiary Care Centers
4.
Methods Mol Biol ; 2232: 113-122, 2021.
Article in English | MEDLINE | ID: mdl-33161543

ABSTRACT

Assessment of endophytic and saprotrophic microbial communities from wood-extracted DNA presents challenges due to the presence of surface microbes that contaminate samples and plant compounds that act as inhibiting agents. Here, we describe a method for decontaminating, sampling, and processing wood at various stages of decay for high-throughput extraction and purification of DNA.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA/isolation & purification , Fungi/genetics , Wood/genetics , DNA/genetics , Fungi/classification , Wood/microbiology
5.
Ecology ; 100(9): e02790, 2019 09.
Article in English | MEDLINE | ID: mdl-31228251

ABSTRACT

Environmental forces and biotic interactions, both positive and negative, structure ecological communities, but their relative roles remain obscure despite strong theory. For instance, ecologically similar species, based on the principle of limiting similarity, are expected to be most competitive and show negative interactions. Specious communities that assemble along broad environmental gradients afford the most power to test theory, but the communities often are difficult to quantify. Microbes, specifically fungal endophytes of wood, are especially suited for testing community assembly theory because they are relatively easy to sample across a comprehensive range of environmental space with clear axes of variation. Moreover, endophytes mediate key forest carbon cycle processes, and although saprophytic fungi from dead wood typically compete, endophytic fungi in living wood may enhance success through cooperative symbioses. To classify interactions within endophyte communities, we analyzed fungal DNA barcode variation across 22 woody plant species growing in woodlands near Richmond, New South Wales, Australia. We estimated the response of endophytes to the measured wood environment (i.e., 11 anatomical and chemical wood traits) and each other using latent-variable models and identified recurrent communities across wood environments using model-based classification. We used this information to evaluate whether (1) co-occurrence patterns are consistent with strong competitive exclusion, and (2) a priori classifications by trophic mode and phylum distinguish taxa that are more likely to have positive vs. negative associations under the principle of limiting similarity. Fungal endophytes were diverse (mean = 140 taxa/sample), with differences in community composition structured by wood traits. Variation in wood water content and carbon concentration were associated with especially large community shifts. Surprisingly, after accounting for wood traits, fungal species were still more than three times more likely to have positive than negative co-occurrence patterns. That is, patterns consistent with strong competitive exclusion were rare, and positive interactions among fungal endophytes were more common than expected. Confirming the frequency of positive vs. negative interactions among fungal taxa requires experimental tests, and our findings establish clear paths for further study. Evidence to date intriguingly suggests that, across a wide range of wood traits, cooperation may outweigh combat for these fungi.


Subject(s)
Endophytes , Wood , Australia , DNA, Fungal , Ecosystem , Fungi
6.
Ecology ; 97(12): 3346-3358, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27912016

ABSTRACT

Plant-soil feedback, the reciprocal relationship between a plant and its associated microbial communities, has been proposed to be an important driver of plant populations and community dynamics. While rarely considered, understanding how plant-soil feedback contributes to plant rarity may have implications for conservation and management of rare species. Wollemi pine (Wollemia nobilis) is a critically endangered species, of which fewer than 100 trees are known to exist in the wild. Seedling survival within the first year after germination and subsequent recruitment of Wollemi pine is limited in the wild. We used a plant-soil feedback approach to investigate the functional effect of species-specific differences previously observed in the microbial communities underneath adult Wollemi pine and a neighboring species, coachwood (Ceratopetalum apetalum), and also whether additional variation in microbial communities in the wild could impact seedling growth. There was no evidence for seedling growth being affected by tree species associated with soil inocula, suggesting that plant-soil feedbacks are not limiting recruitment in the natural population. However, there was evidence of fungal, but not bacterial, community variation impacting seedling growth independently of plant-soil feedbacks. Chemical (pH) and physical (porosity) soil characteristics were identified as potential drivers of the functional outcomes of these fungal communities. The empirical approach described here may provide opportunities to identify the importance of soil microbes to conservation efforts targeting other rare plant species and is also relevant to understanding the importance of soil microbes and plant-soil feedbacks for plant community dynamics more broadly.


Subject(s)
Endangered Species , Plant Roots/growth & development , Seedlings/growth & development , Soil Microbiology , Tracheophyta/growth & development , Plant Roots/microbiology , Seedlings/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...